現在已經進入大數據時代,大數據既能促進信息消費,又能帶動社會管理創新。當然,大多數企業早已認識到大數據對產業的影響,只是面臨著大數據落地的難題。在商業應用層面,維克托·邁爾·舍恩伯格在其所著的《大數據時代》壹書中通過大量的實例進行闡釋;而在技術層面,互聯網巨頭有著得天獨厚的優勢。比如這次的講解人李彥宏所代表的百度,其搜索技術應用於大數據就是順理成章的事情。
在互聯網和IT行業之外的傳統行業也在關註大數據,傳統企業希望通過大數據技術指導企業戰略,了解產業發展、商業模式、市場競爭中成功的關鍵要素,進而提高企業核心能力。然而,傳統企業不具備互聯網企業對數據信息的敏感度,它們產生海量的數據卻不能有效利用數據,或者說數據產生、收集、存儲都可能是數據鏈條的末端,有關數據的進程便完全停止。所以,傳統企業需要在大數據背景下實現轉型。在今天,新技術不斷地顛覆傳統產業,企業深知“慢壹拍”會是什麽後果——柯達被數碼時代拋棄,諾基亞被智能機時代拋棄,蘇寧在電商時代匆忙追趕,電信在互聯網時代尋求突破?各行各業的企業都可能在大數據時代掉隊,反過來也有機會得以煥發青春。
大數據時代,所有的企業都將由數據驅動,數據將成為企業和公***組織越來越重要的資產。同時,企業更需要高效的大數據工具,讓數據資產產生真正的價值。在這個時候,人們首先會朝著互聯網企業看過去。互聯網產業是信息產業,是數據產業,它們生產、交換、再次加工以及最終呈現到用戶面前的“產品”都是數據。因此,在大數據時代,有學者提出“泛互聯網化”的思路,以實踐收集數據資產、發揮大數據商業價值。這正是廣義上的物聯網的概念,數據產生、收集、傳輸、存儲、處理都實現互聯網化,各行各業都互聯網化。
在這個大背景下,企業實現大數據的步驟變得明朗起來。在企業明確自己的大數據項目計劃之後,下壹步便是實施滿足大數據要求的IT建設。
面向雲計算的企業IT建設
大數據離不開雲計算的支持,雲計算是大數據誕生的前提和必要條件。
目前,已經發展成熟的雲計算擁有強大的計算、存儲能力,可以作為大數據集中采集和存儲數據的基礎。雲計算和大數據的關系可以理解為:雲計算為大數據提供了計算能力、存儲空間和訪問通道,而大數據則是雲計算的終極應用。
大數據時代的第壹定律是“樣本即全體”。隨著數據獲取、整理、挖掘的成本伴隨著摩爾定律不斷降低,借助於IT公司提供的數據分析工具,企業將有可能獲得產業鏈上下遊的全部數據,從而將企業的市場決策、供應鏈管控、內部管理的效率提高到前所未有的程度。在IT系統的建設過程中,企業首先面臨的最大困難是在內部解決數據的產生、收集以及存儲問題。當然,此時的數據也可能不夠大,但面臨的問題沒有本質區別。很明顯,能夠建設完整大數據IT系統的企業鳳毛麟角,大多數企業(特別是傳統企業)也沒有這個必要,因為大數據對於它們來說是輔助而非核心業務。企業可以選擇將部分業務外包出去,再將生成的數據傳輸回來,但這時又要面臨數據的傳輸問題。總之,大數據IT建設之前,要考慮哪壹部分是本地建設,哪壹部分置之雲端。
模式壹旦確定,平臺的選擇便成為關鍵,選擇哪壹種數據分析工具,哪壹種數據庫,哪壹類雲服務等等。不同的行業、不同的企業建設大數據IT系統的方案不盡相同,這裏不作展開討論。不過,對大數據IT系統在軟硬件方面的壹些發展趨勢,企業需要重點關註。因為IT技術的發展日新月異,選擇壹個具有競爭力和強大生命力的平臺,企業才能少走彎路,才能真正從投資中獲益。
數據倉庫特殊性尤為重要
對於大多數企業而言,大數據意味著為長年維護且塵封已久的數據倉庫配備壹道可訪問的大門。
數據倉庫過去壹直是、未來也將仍然是企業級機構所不可或缺的關鍵性組成部分。這類系統的作用是將企業方方面面產生的數據匯聚起來,然後分門別類加以劃分,最終讓這些紛繁復雜的信息成為業務分析師深入了解企業運營狀況的寶貴資料。壹套針對可擴展性而精心設計出的基礎設施正是大數據能否真正發揮作用的關鍵所在。