與機器學習經常壹起出現的就是數據挖掘,兩種經常會有重疊的地方,
① 數據挖掘某種意義上更多的是關註從大量的數據中獲得新的見解;
② 機器學習聚焦於進行已知的任務,而數據挖掘則是搜尋隱藏的信息。
例如電商利用機器學習來決定向誰推薦什麽產品,數據挖掘用來了解什麽樣的人喜歡什麽產品。機器學習和數據挖掘不嚴格區分。
數據挖掘和機器學習的區別和聯系,數據挖掘受到很多學科領域的影響,其中數據庫、機器學習、統計學無疑影響最大。對數據挖掘而言,數據庫提供數據管理技術,機器學習和統計學提供數據分析技術。統計學界提供的很多技術通常都要在機器學習界進壹步研究,變成有效的機器學習算法之後才能再進入數據挖掘領域。統計學主要是通過機器學習來對數據挖掘發揮影響,而機器學習和數據庫則是數據挖掘的兩大支撐技術。從數據分析的角度來看,絕大多數數據挖掘技術都來自機器學習領域,但機器學習研究往往並不把海量數據作為處理對象,因此,數據挖掘要對算法進行改造,使得算法性能和空間占用達到實用的地步。同時,數據挖掘還有自身獨特的內容,即關聯分析。
1)、機器學習應用場景:
預測選舉;垃圾郵件過濾;智能交通,自動的信號燈控制;疾病診斷;犯罪預測;估計客戶流失率;自動導航;定向廣告…
機器學習過程:輸入/獲取數據、抽象、泛化
2)、大數據的挖掘常用的方法:
分類、回歸分析、聚類、關聯規則、神經網絡方法、Web 數據挖掘等。這些方法從不同的角度對數據進行挖掘。
(1)分類。分類是找出數據庫中的壹組數據對象的***同特點並按照分類模式將其劃分為不同的類,其目的是通過分類模型,將數據庫中的數據項映射到某個給定的類別中。可以涉及到應用分類、趨勢預測中,如淘寶商鋪將用戶在壹段時間內的購買情況劃分成不同的類,根據情況向用戶推薦關聯類的商品,從而增加商鋪的銷售量。
(2)回歸分析。回歸分析反映了數據庫中數據的屬性值的特性,通過函數表達數據映射的關系來發現屬性值之間的依賴關系。它可以應用到對數據序列的預測及相關關系的研究中去。在市場營銷中,回歸分析可以被應用到各個方面。如通過對本季度銷售的回歸分析,對下壹季度的銷售趨勢作出預測並做出針對性的營銷改變。
(3)聚類。聚類類似於分類,但與分類的目的不同,是針對數據的相似性和差異性將壹組數據分為幾個類別。屬於同壹類別的數據間的相似性很大,但不同類別之間數據的相似性很小,跨類的數據關聯性很低。
(4)關聯規則。關聯規則是隱藏在數據項之間的關聯或相互關系,即可以根據壹個數據項的出現推導出其他數據項的出現。關聯規則的挖掘過程主要包括兩個階段:第壹階段為從海量原始數據中找出所有的高頻項目組;第二階段為從這些高頻項目組產生關聯規則。關聯規則挖掘技術已經被廣泛應用於金融行業企業中用以預測客戶的需求,各銀行在自己的ATM 機上通過捆綁客戶可能感興趣的信息供用戶了解並獲取相應信息來改善自身的營銷。
(5)神經網絡方法。神經網絡作為壹種先進的人工智能技術,因其自身自行處理、分布存儲和高度容錯等特性非常適合處理非線性的以及那些以模糊、不完整、不嚴密的知識或數據為特征的處理問題,它的這壹特點十分適合解決數據挖掘的問題。典型的神經網絡模型主要分為三大類:第壹類是以用於分類預測和模式識別的前饋式神經網絡模型,其主要代表為函數型網絡、感知機;第二類是用於聯想記憶和優化算法的反饋式神經網絡模型,以Hopfield 的離散模型和連續模型為代表。第三類是用於聚類的自組織映射方法,以ART 模型為代表。雖然神經網絡有多種模型及算法,但在特定領域的數據挖掘中使用何種模型及算法並沒有統壹的規則,而且人們很難理解網絡的學習及決策過程。
(6)Web數據挖掘。Web數據挖掘是壹項綜合性技術,指Web 從文檔結構和使用的集合C 中發現隱含的模式P,如果將C看做是輸入,P 看做是輸出,那麽Web 挖掘過程就可以看做是從輸入到輸出的壹個映射過程。
當前越來越多的Web數據都是以數據流的形式出現的,因此對Web數據流挖掘就具有很重要的意義。目前常用的Web數據挖掘算法有:PageRank算法,HITS算法以及LOGSOM 算法。