1919年,盧瑟福等人發現用α射線轟擊氮核時釋放出質子,首次實現人工核反應。此後用射線引起核反應的方法逐漸成為研究原子核的主要手段。初期取得的重大成果是1932年中子的發現和1934年人工放射性核素的制備。原子核是由中子和質子組成的。中子的發現不僅為核結構的研究提供必要的前提,還因為它不帶電荷,不受核電荷的排斥,容易進入原子核而引起中子核反應,成為研究原子核的重要手段。30年代中,人們還從對宇宙線的觀測發現正電子和“介子”(後稱μ子),這些發現是粒子物理學的先河。
20年代後期,開始探討加速帶電粒子的原理。30年代初,靜電、直線和回旋等類型的粒子加速器已具雛形,在高壓倍加器上實現初步核反應。利用加速器可以獲得束流更強、能量更高和種類更多的射線束,大大擴展了核反應的研究,使加速器逐漸成為研究原子核、應用核技術的必要設備。
1939年,O.哈恩和F.斯特拉斯曼發現核裂變,1942年,E.費米建立了第壹個裂變反應堆,開創了人類掌握核能源的新世紀。核能幾乎是取用不竭的能源,為了有效利用核能源、發展核武器,需要解決壹系列很復雜的科學技術問題,而核物理和核技術是其中心環節。因此,核物理飛躍發展,成為競爭十分劇烈的科技領域。這壹階段持續30年左右,是核物理的大發展時期。在此期間,粒子的加速和探測技術有很大發展:30年代,最多只能把質子加速到1×106電子伏特(eV)的數量級;70年代,已達到4×1011eV,可產生能散度特小、準直度特高或流強特大的各種束流。在探測技術方面,半導體計數器的應用大大提高了測定射線能量的分辨率。核電子學和計算技術的飛速發展,從根本上改善了獲取和處理實驗數據的能力,也大大擴展了理論計算的範圍。這壹切有力地促進了核物理研究和核技術應用。對原子核的基本結構和變化規律也有更深入的認識,基本弄清了核子之間的相互作用的各種性質;對穩定核素和壽命較長的放射性核素的基態和低激發態(具核能級)的性質積累了較系統的實驗數據;並通過理論分析,建立了各種適用的原子核模型,成功地解釋了各種核現象和核反應。此外,還開展了高能核反應和重離子核反應的研究。
在現階段,由於重離子加速技術的發展,已能有效地加速從氫到鈾全部元素的離子,能量達到每核子1×109eV,擴充了變革原子核的手段,使重離子核物理研究有全面的發展。強束流的中、高能加速器不僅提供直接加速的離子流,還能提供諸如π介子、Κ介子等次級粒子束,從另壹方面擴充了研究原子核的手段,加速了高能核物理的發展。超導加速器將大大縮小加速器的尺寸,降低造價和運轉費用,並提高束流的品質。
核物理實驗方法和射線探測技術也有了新的發展。微處理機和數據獲取與處理系統的改進,影響深遠。過去,核過程中同時測定幾個參量就很困難,當前,壹次記錄幾十個參量已很普遍。對壹些高能重離子核反應,成千個探測器可同時工作,壹次記錄和處理幾千個參量,以便對成千個放出的粒子進行測定和鑒別。另壹方面,壹些專用的核技術設備都附有自動的數據處理系統,簡化了操作,推廣了使用。