在自然界和人類社會中存在壹些人類無法到達的地方和可能危及人類生命的特殊場合。如行星表面、災難發生礦井、防災救援和反恐鬥爭等,對這些危險環境進行不斷地探索和研究,尋求壹條解決問題的可行途徑成為科學技術發展和人類社會進步的需要。地形不規則和崎嶇不平是這些環境的***同特點。從而使輪式機器人和履帶式機器人的應用受到限制。以往的研究表明輪式移動方式在相對平坦的地形上行駛時,具有相當的優勢運動速度迅速、平穩,結構和控制也較簡單,但在不平地面上行駛時,能耗將大大增加,而在松軟地面或嚴重崎嶇不平的地形上,車輪的作用也將嚴重喪失移動效率大大降低。為了改善輪子對松軟地面和不平地面的適應能力,履帶式移動方式應運而生但履帶式機器人在不平地面上的機動性仍然很差行駛時機身晃動嚴重。與輪式、履帶式移動機器人相比在崎嶇不平的路面步行機器人具有獨特優越性能在這種背景下多足步行機器人的研究蓬勃發展起來。而仿生步行機器人的出現更加顯示出步行機器人的優勢。
多足步行機器人的運動軌跡是壹系列離散的足印運動時只需要離散的點接觸地面對環境的破壞程度也較小可以在可能到達的地面上選擇最優的支撐點對崎嶇地形的適應性強。正因為如此多足步行機器人對環境的破壞程度也較小。輪式和履帶式機器人的則是壹條條連續的轍跡。崎嶇地形中往往含有巖石、泥土、沙子甚至峭壁和陡坡等障礙物可以穩定支撐機器人的連續路徑十分有限,這意味著輪式和履帶式機器人在這種地形中已經不適用。多足步行機器人的腿部具有多個自由度使運動的靈活性大大增強。它可以通過調節腿的長度保持身體水平也可以通過調節腿的伸展程度調整重心的位置因此不易翻倒穩定性更高。當然多足步行機器人也存在壹些不足之處。比如為使腿部協調穩定運動從機械結構設計到控制系統算法都比較復雜相比自然界的節肢動物仿生多足步行機器人的機動性還有很大差距。