1、能量轉化
線粒體是真核生物進行氧化代謝的部位,是糖類、脂肪和氨基酸最終氧化釋放能量的場所。
線粒體負責的最終氧化的***同途徑是三羧酸循環與氧化磷酸化,分別對應有氧呼吸的第二、三階段。
細胞質基質中完成的糖酵解和在線粒體基質中完成的三羧酸循環在會產還原型煙酰胺腺嘌呤二核苷酸(reducednicotinarnideadeninedinucleotide,NADH)。
它和還原型黃素腺嘌呤二核苷酸(reducedflavinadenosinedinucleotide,FADH2)等高能分子,而氧化磷酸化這壹步驟的作用則是利用這些物質還原氧氣釋放能量合成ATP。
在有氧呼吸過程中,1分子葡萄糖經過糖酵解、三羧酸循環和氧化磷酸化將能量釋放後,可產生30-32分子ATP(考慮到將NADH運入線粒體可能需消耗2分子ATP)。
如果細胞所在環境缺氧,則會轉而進行無氧呼吸。此時,糖酵解產生的丙酮酸便不再進入線粒體內的三羧酸循環,而是繼續在細胞質基質中反應(被NADH還原成乙醇或乳酸等發酵產物),但不產生ATP。
所以在無氧呼吸過程中,1分子葡萄糖只能在第壹階段產生2分子ATP。
2、三羧酸循環
糖酵解中生成的每分子丙酮酸會被主動運輸轉運穿過線粒體膜。進入線粒體基質後,丙酮酸會被氧化,並與輔酶A結合生成CO2、還原型輔酶Ⅰ和乙酰輔酶A。
乙酰輔酶A是三羧酸循環(也稱為“檸檬酸循環”或“Krebs循環”)的初級底物。參與該循環的酶除位於線粒體內膜的琥珀酸脫氫酶外都遊離於線粒體基質中。
在三羧酸循環中,每分子乙酰輔酶A被氧化的同時會產生起始電子傳遞鏈的還原型輔因子(包括3分子NADH和1分子FADH2)以及1分子三磷酸鳥苷(GTP)。
3、氧化磷酸化
NADH和FADH2等是具有還原性的分子(在細胞質基質中的還原當量可從由逆向轉運蛋白構成的蘋果酸-天冬氨酸穿梭系統或通過磷酸甘油穿梭作用進入電子傳遞鏈)。
在電子傳遞鏈裏面經過幾步反應最終將氧氣還原並釋放能量,其中壹部分能量用於生成ATP,其余則作為熱能散失。
在線粒體內膜上的酶復合物(NADH-泛醌還原酶、泛醌-細胞色素c還原酶、細胞色素c氧化酶)利用過程中釋放的能量將質子逆濃度梯度泵入線粒體膜間隙。
雖然這壹過程是高效的,但仍有少量電子會過早地還原氧氣,形成超氧化物等活性氧(ROS),這些物質能引起氧化應激反應使線粒體性能發生衰退。
當質子被泵入線粒體膜間隙後,線粒體內膜兩側便建立起了電化學梯度,質子就會有順濃度梯度擴散的趨勢。質子唯壹的擴散通道是ATP合酶(呼吸鏈復合物V)。
當質子通過復合物從膜間隙回到線粒體基質時,電勢能被ATP合酶用於將ADP和磷酸合成ATP。這個過程被稱為“化學滲透”,是壹種協助擴散。
彼得·米切爾就因為提出了這壹假說而獲得了1978年諾貝爾獎。1997年諾貝爾獎獲得者保羅·博耶和約翰·瓦克闡明了ATP合酶的機制。
4、儲存鈣離子
線粒體可以儲存鈣離子,可以和內質網、細胞外基質等結構協同作用,從而控制細胞中的鈣離子濃度的動態平衡。線粒體迅速吸收鈣離子的能力使其成為細胞中鈣離子的緩沖區。
在線粒體內膜膜電位的驅動下,鈣離子可由存在於線粒體內膜中的單向運送體輸送進入線粒體基質;排出線粒體基質時則需要鈉-鈣交換蛋白的輔助或通過鈣誘導鈣釋放(calcium-induced-calcium-release,CICR)機制。
在鈣離子釋放時會引起伴隨著較大膜電位變化的“鈣波”(calciumwave),能激活某些第二信使系統蛋白,協調諸如突觸中神經遞質的釋放及內分泌細胞中激素的分泌。線粒體也參與細胞雕亡時的鈣離子信號轉導。
5、其他功能
除了合成ATP為細胞提供能量等主要功能外,線粒體還承擔了許多其他生理功能。
調節膜電位並控制細胞程序性死亡:當線粒體內膜與外膜接觸位點處生成了由己糖激酶(細胞質基質蛋白)、外周苯並二氮受體和電壓依賴陰離子通道(線粒體外膜蛋白)、肌酸激酶(線粒體膜間隙蛋白)、ADP-ATP載體(線粒體內膜蛋白)。
它和親環蛋白D(線粒體基質蛋白)等多種蛋白質組成的通透性轉變孔道(PT孔道)後,會使線粒體內膜通透性提高,引起線粒體跨膜電位的耗散,從而導致細胞雕亡。線粒體膜通透性增加也能使誘導雕亡因子(AIF)等分子釋放進入細胞質基質,破壞細胞結構。
線粒體的某些功能只有在特定的組織細胞中才能展現。例如,只有肝臟細胞中的線粒體才具有對氨氣(蛋白質代謝過程中產生的廢物)造成的毒害解毒的功能。
參考資料: