古詩詞大全網 - 成語故事 - 紅外光譜的原理

紅外光譜的原理

紅外光譜的原理

當壹束具有連續波長的紅外光通過物質,物質分子中某個基團的振動頻率或轉動頻率和紅外光的頻率壹樣時,分子就吸收能量由原來的基態振(轉)動能級躍遷到能量較高的振(轉)動能級,分子吸收紅外輻射後發生振動和轉動能級的躍遷,該處波長的光就被物質吸收。

所以,紅外光譜法實質上是壹種根據分子內部原子間的相對振動和分子轉動等信息來確定物質分子結構和鑒別化合物的分析方法。將分子吸收紅外光的情況用儀器記錄下來,就得到紅外光譜圖。紅外光譜圖通常用波長(λ)或波數(σ)為橫坐標,表示吸收峰的位置,用透光率(T%)或者吸光度(A)為縱坐標,表示吸收強度。

當外界電磁波照射分子時,如照射的電磁波的能量與分子的兩能級差相等,該頻率的電磁波就被該分子吸收,從而引起分子對應能級的躍遷,宏觀表現為透射光強度變小。電磁波能量與分子兩能級差相等為物質產生紅外吸收光譜必須滿足條件之壹,這決定了吸收峰出現的位置。

紅外吸收光譜產生的第二個條件是紅外光與分子之間有偶合作用,為了滿足這個條件,分子振動時其偶極矩必須發生變化。這實際上保證了紅外光的能量能傳遞給分子,這種能量的傳遞是通過分子振動偶極矩的變化來實現的。

並非所有的振動都會產生紅外吸收,只有偶極矩發生變化的振動才能引起可觀測的紅外吸收,這種振動稱為紅外活性振動;偶極矩等於零的分子振動不能產生紅外吸收,稱為紅外非活性振動。

分子的振動形式可以分為兩大類:伸縮振動和彎曲振動。前者是指原子沿鍵軸方向的往復運動,振動過程中鍵長發生變化。後者是指原子垂直於化學鍵方向的振動。通常用不同的符號表示不同的振動形式,例如,伸縮振動可分為對稱伸縮振動和反對稱伸縮振動,分別用 Vs 和Vas 表示。彎曲振動可分為面內彎曲振動(δ)和面外彎曲振動(γ)。

從理論上來說,每壹個基本振動都能吸收與其頻率相同的紅外光,在紅外光譜圖對應的位置上出現壹個吸收峰。實際上有壹些振動分子沒有偶極矩變化是紅外非活性的;另外有壹些振動的頻率相同,發生簡並;還有壹些振動頻率超出了儀器可以檢測的範圍,這些都使得實際紅外譜圖中的吸收峰數目大大低於理論值。

組成分子的各種基團都有自己特定的紅外特征吸收峰。不同化合物中,同壹種官能團的吸收振動總是出現在壹個窄的波數範圍內,但它不是出現在壹個固定波數上,具體出現在哪壹波數,與基團在分子中所處的環境有關。

引起基團頻率位移的因素是多方面的,其中外部因素主要是分子所處的物理狀態和化學環境,如溫度效應和溶劑效應等。

對於導致基團頻率位移的內部因素,迄今已知的有分子中取代基的電性效應:如誘導效應、***軛效應、中介效應、偶極場效應等;機械效應:如質量效應、張力引起的鍵角效應、振動之間的耦合效應等。

這些問題雖然已有不少研究報道,並有較為系統的論述,但是,若想按照某種效應的結果來定量地預測有關基團頻率位移的方向和大小,卻往往難以做到,因為這些效應大都不是單壹出現的。這樣,在進行不同分子間的比較時就很困難。

另外氫鍵效應和配位效應也會導致基團頻率位移,如果發生在分子間,則屬於外部因素,若發生在分子內,則屬於分子內部因素。

紅外譜帶的強度是壹個振動躍遷概率的量度,而躍遷概率與分子振動時偶極矩的變化大小有關,偶極矩變化愈大,譜帶強度愈大。偶極矩的變化與基團本身固有的偶極矩有關,故基團極性越強,振動時偶極矩變化越大,吸收譜帶越強;分子的對稱性越高,振動時偶極矩變化越小,吸收譜帶越弱。

紅外光譜是分子能選擇性吸收某些波長的紅外線,而引起分子中振動能級和轉動能級的躍遷,檢測紅外線被吸收的情況可得到物質的紅外吸收光譜,又稱分子振動光譜或振轉光譜。

紅外光譜的分區

通常將紅外光譜分為三個區域:近紅外區(0.75~2.5μm)、中紅外區(2.5~25μm)和遠紅外區(25~300μm)。壹般說來,近紅外光譜是由分子的倍頻、合頻產生的;中紅外光譜屬於分子的基頻振動光譜;遠紅外光譜則屬於分子的轉動光譜和某些基團的振動光譜。

由於絕大多數有機物和無機物的基頻吸收帶都出現在中紅外區,因此中紅外區是研究和應用最多的區域,積累的資料也最多,儀器技術最為成熟。通常所說的紅外光譜即指中紅外光譜。

應用

紅外光譜對樣品的適用性相當廣泛,固態、液態或氣態樣品都能應用,無機、有機、高分子化合物都可檢測。此外,紅外光譜還具有測試迅速,操作方便,重復性好,靈敏度高,試樣用量少,儀器結構簡單等特點,因此,它已成為現代結構化學和分析化學最常用和不可缺少的工具。

紅外光譜在高聚物的構型、構象、力學性質的研究以及物理、天文、氣象、遙感、生物、醫學等領域也有廣泛的應用。

紅外吸收峰的位置與強度反映了分子結構上的特點,可以用來鑒別未知物的結構組成或確定其化學基團;而吸收譜帶的吸收強度與化學基團的含量有關,可用於進行定量分析和純度鑒定。

另外,在化學反應的機理研究上,紅外光譜也發揮了壹定的作用。但其應用最廣的還是未知化合物的結構鑒定。

紅外光譜不但可以用來研究分子的結構和化學鍵,如力常數的測定和分子對稱性的判據,而且還可以作為表征和鑒別化學物種的方法。

例如氣態水分子是非線性的三原子分子,它的v1=3652厘米、v3=3756厘米、v2=1596厘米而在液態水分子的紅外光譜中,由於水分子間的氫鍵作用,使v1和v3的伸縮振動譜帶疊加在壹起,在3402厘米處出現壹條寬譜帶,它的變角振動v2位於1647厘米。

在重水中,由於氘的原子質量比氫大,使重水的v1和v3重疊譜帶移至2502厘米處,v2為1210厘米。以上現象說明水和重水的結構雖然很相近,但紅外光譜的差別是很大的。

紅外光譜具有高度的特征性,所以采用與標準化合物的紅外光譜對比的方法來做分析鑒定已很普遍,並已有幾種標準紅外光譜匯集成冊出版,如《薩特勒標準紅外光柵光譜集》收集了十萬多個化合物的紅外光譜圖。近年來又將些這圖譜貯存在計算機中,用來對比和檢索。

參考資料:

百度百科:紅外光譜