古詩詞大全網 - 成語查詢 - 什麽叫線性規劃

什麽叫線性規劃

[編輯本段]線性規劃概述

線性規劃是運籌學中研究較早、發展較快、應用廣泛、方法較成熟的壹個重要分支,它是輔助人們進行科學管理的壹種數學方法.在經濟管理、交通運輸、工農業生產等經濟活動中,提高經濟效果是人們不可缺少的要求,而提高經濟效果壹般通過兩種途徑:壹是技術方面的改進,例如改善生產工藝,使用新設備和新型原材料.二是生產組織與計劃的改進,即合理安排人力物力資源.線性規劃所研究的是:在壹定條件下,合理安排人力物力等資源,使經濟效果達到最好.壹般地,求線性目標函數在線性約束條件下的最大值或最小值的問題,統稱為線性規劃問題。滿足線性約束條件的解叫做可行解,由所有可行解組成的集合叫做可行域。決策變量、約束條件、目標函數是線性規劃的三要素.

[編輯本段]線性規劃問題的數學模型的壹般形式

(1)列出約束條件及目標函數 (2)畫出約束條件所表示的可行域 (3)在可行域內求目標函數的最優解及最優值

[編輯本段]線性規劃的發展

法國數學家 J.- B.- J.傅裏葉和 C.瓦萊-普森分別於1832和1911年獨立地提出線性規劃的想法,但未引起註意。 1939年蘇聯數學家Л.В.康托羅維奇在《生產組織與計劃中的數學方法》壹書中提出線性規劃問題,也未引起重視。 1947年美國數學家G.B.丹齊克提出線性規劃的壹般數學模型和求解線性規劃問題的通用方法——單純形法,為這門學科奠定了基礎。 1947年美國數學家J.von諾伊曼提出對偶理論,開創了線性規劃的許多新的研究領域,擴大了它的應用範圍和解題能力。 1951年美國經濟學家T.C.庫普曼斯把線性規劃應用到經濟領域,為此與康托羅維奇壹起獲1975年諾貝爾經濟學獎。 50年代後對線性規劃進行大量的理論研究,並湧現出壹大批新的算法。例如,1954年C.萊姆基提出對偶單純形法,1954年S.加斯和T.薩迪等人解決了線性規劃的靈敏度分析和參數規劃問題,1956年A.塔克提出互補松弛定理,1960年G.B.丹齊克和P.沃爾夫提出分解算法等。 線性規劃的研究成果還直接推動了其他數學規劃問題包括整數規劃、隨機規劃和非線性規劃的算法研究。由於數字電子計算機的發展,出現了許多線性規劃軟件,如MPSX,OPHEIE,UMPIRE等,可以很方便地求解幾千個變量的線性規劃問題。 1979年蘇聯數學家L. G. Khachian提出解線性規劃問題的橢球算法,並證明它是多項式時間算法。 1984年美國貝爾電話實驗室的印度數學家N.卡馬卡提出解線性規劃問題的新的多項式時間算法。用這種方法求解線性規劃問題在變量個數為5000時只要單純形法所用時間的1/50。現已形成線性規劃多項式算法理論。50年代後線性規劃的應用範圍不斷擴大。 建立線性規劃模型的方法

[編輯本段]線性規劃的模型建立

從實際問題中建立數學模型壹般有以下三個步驟; 1.根據影響所要達到目的的因素找到決策變量; 2.由決策變量和所在達到目的之間的函數關系確定目標函數; 3.由決策變量所受的限制條件確定決策變量所要滿足的約束條件。 所建立的數學模型具有以下特點: 1、每個模型都有若幹個決策變量(x1,x2,x3……,xn),其中n為決策變量個數。決策變量的壹組值表示壹種方案,同時決策變量壹般是非負的。 2、目標函數是決策變量的線性函數,根據具體問題可以是最大化(max)或最小化(min),二者統稱為最優化(opt)。 3、約束條件也是決策變量的線性函數。 當我們得到的數學模型的目標函數為線性函數,約束條件為線性等式或不等式時稱此數學模型為線性規劃模型。 例: 生產安排模型:某工廠要安排生產Ⅰ、Ⅱ兩種產品,已知生產單位產品所需的設備臺時及A、B兩種原材料的消耗,如表所示,表中右邊壹列是每日設備能力及原材料供應的限量,該工廠生產壹單位產品Ⅰ可獲利2元,生產壹單位產品Ⅱ可獲利3元,問應如何安排生產,使其獲利最多? 解: 1、確定決策變量:設x1、x2分別為產品Ⅰ、Ⅱ的生產數量; 2、明確目標函數:獲利最大,即求2x1+3x2最大值; 3、所滿足的約束條件: 設備限制:x1+2x2≤8 原材料A限制:4x1≤16 原材料B限制:4x2≤12 基本要求:x1,x2≥0 用max代替最大值,s.t.(subject to 的簡寫)代替約束條件,則該模型可記為: max z=2x1+3x2 s.t. x1+2x2≤8 4x1≤16 4x2≤12 x1,x2≥0

[編輯本段]線性規劃的解法

求解線性規劃問題的基本方法是單純形法,現在已有單純形法的標準軟件,可在電子計算機上求解約束條件和決策變量數達 10000個以上的線性規劃問題。為了提高解題速度,又有改進單純形法、對偶單純形法、原始對偶方法、分解算法和各種多項式時間算法。對於只有兩個變量的簡單的線性規劃問題,也可采用圖解法求解。這種方法僅適用於只有兩個變量的線性規劃問題。它的特點是直觀而易於理解,但實用價值不大。通過圖解法求解可以理解線性規劃的壹些基本概念。 對於壹般線性規劃問題: Min z=CX S.T. AX =b X>=0 其中A為壹個m*n矩陣。 若A行滿秩 則可以找到基矩陣B,並尋找初始基解。 用N表示對應於B的非基矩陣。則規劃問題1可化為: 規劃問題2: Min z=CB XB+CNXN S.T. B XB+N XN = b (1) XB >= 0, XN >= 0 (2) (1)兩邊同乘於B-1,得 XB + B-1 N XN = B-1 b 同時,由上式得XB = B-1 b - B-1 N XN,也代入目標函數,問題可以繼續化為: 規劃問題3: Min z=CB B-1 b + ( CN - CB B-1 N ) XN S.T. XB+B-1N XN = B-1 b (1) XB >= 0, XN >= 0 (2) 令N:=B-1N,b:= B-1 b,ζ= CB B-1b,σ= CN - CB B-1 N,則上述問題化為規劃問題形式4: Min z= ζ + σ XN S.T. XB+ N XN = b (1) XB >= 0, XN >= 0 (2) 在上述變換中,若能找到規劃問題形式4,使得b>=0,稱該形式為初始基解形式。 上述的變換相當於對整個擴展矩陣(包含C及A) 乘以增廣矩陣 。所以重在選擇B,從而找出對應的CB。 若存在初始基解 若σ>= 0 則z >=ζ。同時,令XN = 0,XB = b,這是壹個可行解,且此時z=ζ,即達到最優值。所以,此時可以得到最優解。 若σ >= 0不成立 可以采用單純形表變換。 σ中存在分量<0。這些負分量對應的決策變量編號中,最小的為j。N中與j對應的列向量為Pj。 若Pj <=0不成立 則Pj至少存在壹個分量ai,j為正。在規劃問題4的約束條件(1)的兩邊乘以矩陣T。 T= 則變換後,決策變量xj成為基變量,替換掉原來的那個基變量。為使得T b >= 0,且T Pj=ei(其中,ei表示第i個單位向量),需要: l ai,j>0。 l βq+βi*(-aq,j/ai,j)>=0,其中q!=i。即βq>=βi/ ai,j * aq,j。 n 若aq,j<=0,上式壹定成立。 n 若aq,j>0,則需要βq / aq,j >=βi/ ai,j。因此,要選擇i使得βi/ ai,j最小。 如果這種方法確定了多個下標,選擇下標最小的壹個。 轉換後得到規劃問題4的形式,繼續對σ進行判斷。由於基解是有限個,因此,壹定可以在有限步跳出該循環。 若對於每壹個i,ai,j<=0 最優值無界。 若不能尋找到初始基解 無解。 若A不是行滿秩 化簡直到A行滿秩,轉到若A行滿秩。

[編輯本段]線性規劃的應用

在企業的各項管理活動中,例如計劃、生產、運輸、技術等問題,線性規劃是指從各種限制條件的組合中,選擇出最為合理的計算方法,建立線性規劃模型從而求得最佳結果.